Manganese and Zinc Regulate Virulence Determinants in Borrelia burgdorferi

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemotaxis in Borrelia burgdorferi.

Borrelia burgdorferi is a motile spirochete which has been identified as the causative microorganism in Lyme disease. The physiological functions which govern the motility of this organism have not been elucidated. In this study, we found that motility of B. burgdorferi required an environment similar to interstitial fluid (e.g., pH 7.6 and 0.15 M NaCl). Several methods were used to detect and ...

متن کامل

Borrelia burgdorferi (Lyme Disease)

Lyme disease is the most common vector-borne disease in the United States. In the United States, the spirochete Borrelia burgdorferi sensu stricto (hereafter termed B burgdorferi) is the only pathogen that causes Lyme disease. However, in Europe and Asia, Borrelia afzelii, Borrelia garinii, and other related species, in addition to B burgdorferi, cause Lyme disease. In the United States, these ...

متن کامل

Erythromycin resistance in Borrelia burgdorferi.

Susceptibility testing of laboratory strains and clinical isolates of Borrelia burgdorferi indicates that resistance to erythromycin is present in them. Evaluation of the MICs, minimal bactericidal concentrations, and kinetics of bacterial killing of erythromycin suggests that this resistance is increased by preexposure to the antibiotic, is dependent on inoculum size, and may be the result of ...

متن کامل

Genetics of Borrelia burgdorferi.

The spirochetes in the Borrelia burgdorferi sensu lato genospecies group cycle in nature between tick vectors and vertebrate hosts. The current assemblage of B. burgdorferi sensu lato, of which three species cause Lyme disease in humans, originated from a rapid species radiation that occurred near the origin of the clade. All of these species share a unique genome structure that is highly segme...

متن کامل

Acetyl-Phosphate Is Not a Global Regulatory Bridge between Virulence and Central Metabolism in Borrelia burgdorferi

In B. burgdorferi, the Rrp2-RpoN-RpoS signaling cascade is a distinctive system that coordinates the expression of virulence factors required for successful transition between its arthropod vector and mammalian hosts. Rrp2 (BB0763), an RpoN specific response regulator, is essential to activate this regulatory pathway. Previous investigations have attempted to identify the phosphate donor of Rrp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Infection and Immunity

سال: 2013

ISSN: 0019-9567,1098-5522

DOI: 10.1128/iai.00507-13